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Abstract

A general framework is proposed for the numerical approximation of Feynman–Kac path integrals in the context of

quantum statistical mechanics. Each infinite-dimensional path integral is approximated by a Riemann integral over a

finite-dimensional Sobolev space by restricting the integrand to a subspace of all admissible paths. Through this

process, a wide class of methods is derived, with each method corresponding to a different choice for the approximating

subspace. It is shown that the traditional ‘‘short-time’’ approximation and ‘‘Fourier discretization’’ can be recovered by

using linear and spectral basis functions, respectively. As an illustration of the flexibility afforded by the subspace

approach, a novel method is formulated using cubic elements and is shown to have improved convergence properties

when applied to model problems.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The path integral approach provides a powerful method for studying properties of quantum many-body

systems [1]. When applied to statistical mechanics [2], each element of the quantum density matrix is ex-
pressed as an integral over all curves connecting two configurations

qðb; aÞ ¼
a:b

D½xðsÞ� exp
�
� 1

�h
U½xðsÞ; b�

�
: ð1Þ

The symbol D½xðsÞ� indicates that the integration is performed over the set of all differentiable curves,
x : ½0; b�h� ! Rd , with xð0Þ ¼ a and xðb�hÞ ¼ b. The integer d reflects the dimensionality, with d ¼ 3N for a

system of N -particles in 3-dimensional space. The functional U can be derived from the classical action by
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introducing a relationship between temperature and imaginary time (it ¼ b�h) [1]. In this paper, we will

restrict our attention to the quantum many-body system, for which U takes the following form:

U½xðsÞ; b� ¼
Z b�h

0

1

2

Xd
i¼1

mi _xxiðsÞ2 þ V ½xðsÞ�ds: ð2Þ

Calculating the path integral in (1) is a challenging task, which in general cannot be performed ana-

lytically. It is only for simple model problems, such as quadratic potentials, that an exact solution can be

obtained. For more complex systems, the path integral has traditionally been estimated using either the

‘‘short-time’’ approximation (STA) [3] or ‘‘Fourier discretization’’ (FD) [4,5]. Many authors have proposed

improvements to the standard STA and FD, using techniques such as improved estimators [6,7], partial
averaging [8–10], higher-order exponential splittings [11], advanced reference potentials [12], semi-classical

expansions [13], and extrapolation [14]. The fundamental approach is the same in all of these methods: the

path integral is reduced to a high (but finite) dimensional Riemann integral, which is then approximated

using either Monte Carlo or molecular-dynamics simulation techniques.

In this paper, we investigate the discretization of path integrals by projection onto a finite-dimensional

subspace. The idea of approximating path integrals using a finite subset of basis functions has been sug-

gested before in the literature. Davison was one of the first to consider the use of orthogonal function

expansions in the representation of Feynman path integrals [15], although he did not explore truncating the
expansion. In a related article on Wiener integration of a different class of functionals, Cameron proposed

using a finite set of orthogonal basis functions, and investigated the convergence of Fourier (spectral) el-

ements [16]. An advantage of the subspace approach is that we need not require that the basis functions are

orthogonal, allowing for the direct comparison of the STA and FD methods. This is very different from

operator splitting methods, which seek higher-order approximations to the Boltzmann operator [11,17]. We

should note that Coalson explored some of the connections between the STA and FD methods [18], al-

though using a different technique.

The real power of the subspace approach is that new methods can be readily constructed using general
classes of basis functions such as orthogonal polynomials or finite elements. The structural properties of the

basis functions, such as smoothness and compact support, can be varied in an effort to improve overall

efficiency. In Section 3, we derive path integral methods starting from three different classes of basis basis

functions. It is shown that while the first two choices (linear and spectral elements) result in known methods

(STA and FD), a new method can be constructed using compactly supported (Hermite) cubic splines

(HCS).

The one-dimensional harmonic oscillator is one of only a few systems for which the path integral can

be evaluated exactly. In Section 4, we derive expressions for the average energy of the harmonic os-
cillator, using two different energy estimators (E1 and E2) with a general subspace method. Although

both estimators converge to the exact average energy, we show that E2 (which is based on the virial

equation) is far more accurate. While the error in E1 is first-order for all three methods, the error in E2

is second-, third-, and sixth-order when it is calculated using the STA, FD, and HCS methods, re-

spectively.

In Section 5, we investigate the efficiency of the path integral methods using numerical experiments. We

apply each method to the problem of calculating the average energy of a particle in a one-dimensional

double well. Metropolis Monte Carlo is used to sample configurations from each approximating subspace.
The efficiency of each method is measured by comparing the accuracy in the E2 estimator as a function of

(a) subspace dimension and (b) total computation time. It is shown that while the FD and HCS methods

provide a similar degree of accuracy as a function of subspace dimension, the HCS method requires far less

computation time. This improvement in efficiency exhibited by the HCS method is due to the compact

support of the Hermite cubic basis functions.

S.D. Bond et al. / Journal of Computational Physics 185 (2003) 472–483 473



2. Path integral approximation

To illustrate how one can use a subspace approximation to discretize the quantum density matrix in (1),

we start by introducing a change of variables to simplify the boundary conditions and temperature de-

pendence for each path integral: xðsÞ ¼ aþ ðb� aÞs=b�hþ yðs=b�hÞ. Since the admissible paths, x, satisfy the
boundary conditions xð0Þ ¼ a and xðb�hÞ ¼ b, the reduced paths given by y, will satisfy Dirichlet boundary

conditions, yð0Þ ¼ yð1Þ ¼ 0, independent of a, b, and b. Introducing this change of variables into (1), results
in the following:

qðb; aÞ ¼
0:0

D y
s
b�h

� �� �
exp

1

�h
U a

��
þ bð � aÞ s

b�h
þ y

s
b�h

� �
; b

��
: ð3Þ

Note that the ith component of each reduced path y, denoted by yi, is a real-valued function on the interval
½0; 1�, satisfying Dirichlet boundary conditions. For the systems considered in this article, we also require
that the derivative of each yi is measurable (i.e., square-integrable). Functions of this form are members of

an infinite dimensional Sobolev space [19], defined by

S1
0½0; 1� ¼ w 2 C½0; 1�jwð0Þ

	
¼ wð1Þ ¼ 0 and kwkS < 1



; ð4Þ

where

kwk2S 
Z 1

0

_wwðnÞ2 þ wðnÞ2 dn: ð5Þ

We proceed in the following manner to discretize (3): Consider a sequence of subspaces of increasing

dimensionV1; . . . ;VP ; . . . � S1
0½0; 1�, where eachVP is of dimension P . For convenience, let each subspace

be defined as the span of a particular set of basis functions: VP ¼ spanfw1; . . . ;wPg. Now, given a com-

ponent function yi 2 S1
0½0; 1�, we can define its projection on VP uniquely by

yðP Þi ðnÞ 
XP
k¼1

ak;iwkðnÞ: ð6Þ

Using the projection yðP Þi ðnÞ as an approximation of yiðnÞ reduces the infinite-dimensional path integral in

(3) to a finite-dimensional Riemann integral over the coefficients, ai;k:

qðpÞðb; aÞ ¼
Z

daJ exp
�
� 1

�h
U a

�
þ ðb� aÞ s

b�h
þ yðPÞ

s
b�h

� �
;b

��
: ð7Þ

Here, we have used simplified notation for the multi-dimensional integral, with da 
Q

k;i dak;i. The con-

stant J reflects the particular choice of variables, and can be readily calculated (which we show later in this

section). The reader should note that (7) does not depend on the basis functions chosen to represent the

approximating subspace. If both fw1; . . . ;wPg and f ~ww1; . . . ;
~wwPg span VP , then there is an invertible linear

transformation (i.e., change of variables) U such that ~aa ¼ Ua.

To show in detail how subspace methods can be applied in practice, we consider the case of an N -body
Hamiltonian system:

ĤH ¼ 1

2

Xd
i¼1

m�1
i p̂p2i þ V ½x1; . . . ; xd �: ð8Þ

Here, the coordinate and momentum operators are denoted by xi and p̂pi respectively. For this system the

functional U is given by (2), which when applied to the projected path, xðPÞðsÞ  aþ ðb� aÞs=b�hþ
yðP Þðs=b�hÞ, results in
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U xðP ÞðsÞ; b
� 

¼
Z b�h

0

Xd
i¼1

mi

2
_xxðPÞi ðsÞ
h i2

þ V xðPÞðsÞ
� 

ds: ð9Þ

After expanding the s-integrals, introducing a change of variables n ¼ s=b�h, and using the boundary

conditions of each wk, we have

U xðP Þðb�hnÞ; b
� 

¼
Xd
i¼1

mi

2b�h
ðbi
n

� aiÞ2 þ~aaTi K~aai

o
þ b�h

Z 1

0

V a
�

þ ðb� aÞn þ yðPÞðnÞ

dn; ð10Þ

where ~aai  ½a1;i � � � aP ;i�T. The ‘‘stiffness matrix’’, K 2 RP�P , has entries given by the inner-product

Kj;k ¼
Z 1

0

_wwjðnÞ _wwkðnÞdn: ð11Þ

Substituting (10) into (7), we obtain a simplified expression for the approximate density matrix:

qðpÞðb; aÞ ¼ J exp

(
�
Xd
i¼1

mi

2b�h2
ðbi � aiÞ2

)Z
da exp

(
�
Xd
i¼1

mi

2b�h2
~aaTi K~aai � b

Z 1

0

V xðPÞðnÞ
� 

dn

)
;

ð12Þ

where xðPÞðnÞ ¼ aþ ðb� aÞn þ yðPÞðnÞ. For the Fourier case, one typically calculates J by requiring that the
discretization be exact when applied to an ideal gas (i.e., V  0) [4,5,15]. We can apply this same technique

to a general subspace method. Assuming that K is symmetric positive definite, each integral over~aai can be

evaluated by diagonalizing K and applying a linear change of variables; e.g.,Z
exp
n
�~aaTK~aa

o
d~aa ¼ det

1

p
K

� �� ��1=2
: ð13Þ

Applying this formula to (12) with V  0 allows us to solve for J in a straightforward manner:

J ¼
Yd
i¼1

ffiffiffiffiffiffiffiffiffiffi
detK

p mi

2pb�h2

� �ðPþ1Þ=2

: ð14Þ

Before discussing particular choices for basis functions, we should mention that, in general, the one-

dimensional n-integral in (12) cannot be performed analytically. This problem has been traditionally cir-

cumvented by using a discrete approximation, such as Gaussian quadrature [5,18]. For example, one can

view the primitive STA as using the trapezoidal rule. If the quadrature scheme is of sufficiently high order
its use will not reduce the asymptotic rate of convergence of the overall method. An optimal scheme must

be efficient, since for nonlinear N -body systems evaluating V may be computationally expensive.

3. Subspace methods

As we mentioned in the previous section, the real benefit of using a general subspace approach is the

flexibility afforded through the choice of basis functions. By considering a general class of pseudo-spectral
or finite-element basis functions, a diverse group of discretizations can be constructed. Direct comparisons

can be made between basis functions of varying smoothness and support. However, for brevity, we restrict

our attention in this paper to three different types of basis functions: linear, spectral, and cubic elements.

Representative basis functions from each of these discretizations are shown in Fig. 1.
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The traditional STA method can be constructed by considering polygonal paths, which can be repre-

sented by piecewise linear basis functions [19]. For a given number of linear segments, P þ 1, we can define

an approximating subspace VP as the span of basis functions fw1; . . . ;wPg, where each wk is defined by the

following formula:

wkðnÞ :¼ /linðnðP þ 1Þ � kÞ with /linðuÞ :¼ 1� juj u 2 ½�1; 1�;
0 otherwise:

�

For this discretization, one can show that the reduced path yðPÞðnÞ ¼
P

akwkðnÞ satisfies Dirichlet boundary
conditions, and forms a polygonal path with corners at the interior grid points (j=ðP þ 1Þ; aj) for integers
16 j6 P . The ‘‘stiffness’’ matrix, K 2 RP�P , can be calculated in a routine manner, using its definition given

in (11):

Ksta :¼ ðP þ 1Þ

2 �1 0 �
�1 2 � 0

0 � 2 �1
� 0 �1 2

2
664

3
775: ð15Þ

We should note that in the traditional formulation of the STA method, the coefficients represent points on

the ‘‘true path’’, rather than the ‘‘reduced path’’. The two formulations are actually equivalent, with the

coefficients related through a trivial linear change of variables.

In a similar manner, the FD method can be derived using the subspace approach by considering spectral

basis functions of the form

wkðnÞ ¼
1

k
sinðkpnÞ: ð16Þ

One attractive feature of this basis is that the stiffness matrix, K 2 RP�P , is diagonal

Kfd :¼ p2

2

1 0 �
0 � 0
� 0 1

2
4

3
5: ð17Þ

A new method can be constructed by approximating the space of paths using piecewise (Hermite) cubic
splines (HCS) [19]. Each spline is defined on an interval of width 2=P , with its shape uniquely determined by

Fig. 1. Sample basis functions are shown above for the (a) linear, (b) spectral, and (c) cubic element methods.
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its function value and derivative at the ends of the interval. It is assumed here that P is an even integer. Each

piecewise cubic path has a continuous derivative, and is described by linear combinations of the basis

functions

wk ¼
/hcs
1 ðnP=2� kÞ; 16 k < P=2;

/hcs
2 ðnP=2þ P=2� kÞ; P=26 k6 P ;

(
ð18Þ

where

/hcs
1 ðuÞ :¼ ð1� jujÞ2ð2juj þ 1Þ u 2 ½�1; 1�;

0 otherwise;

(
and

/hcs
2 ðuÞ :¼ uð1� jujÞ2 u 2 ½�1; 1�;

0 otherwise:

(

One can verify that the reduced path yðPÞðnÞ ¼
P

akwkðnÞ satisfies Dirichlet boundary conditions, and in-

terpolates the interior grid points (2j=P ; aj) for integers 16 j < P=2. The derivative of the path at all the

grid points is determined by the remaining P=2þ 1 coefficients, ak. Due to the compact support of the basis

functions, the stiffness matrix is banded, with block structure

Khcs ¼ P
60

K1 K3

KT
3 K2

� �
; ð19Þ

where the blocks are given by

K1 ¼

72 �36 0 �
�36 72 � 0

0 � 72 �36
� 0 �36 72

2
664

3
775; K2 ¼

4 �1 0 �
�1 8 � 0

0 � 8 �1
� 0 �1 4

2
664

3
775; ð20Þ

and

K3 ¼

�3 0 3 0 � �
0 �3 0 � � 0

0 � � 0 3 0

� � 0 �3 0 3

2
664

3
775: ð21Þ

Note that the blocks are not all the same size, with K3 of dimension ððP=2Þ � 1Þ � ððP=2Þ þ 1Þ. The de-
terminant of Khcs may be calculated exactly, but for most purposes it is enough to know that it is a constant,

which will cancel out when (12) is used to calculate averages.

4. Harmonic oscillator

In this section we present a simple procedure for exactly evaluating the path integrals which arise when

the harmonic oscillator density matrix is discretized using an arbitrary subspace method. This is one of the

few cases where both the approximate and exact density matrices can be evaluated analytically. We will

restrict our attention to the problem of selecting a suitable energy estimator for calculating the average

energy.

The partition function is defined as the trace of the density operator:

Q  Tr½q̂q� ¼
Z

qða; aÞda: ð22Þ
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Since the density operator is proportional to exp½�bĤH �, we can calculate the average energy by differen-

tiating the log of the partition function with respect to b

hEi ¼ � o

ob
lnQ ¼ Tr½ĤH q̂q�

Tr½q̂q� ¼
R
½ĤHqðx; aÞ�x¼a daR

qða; aÞda : ð23Þ

To calculate the partition function for the approximate density matrix, qðpÞðb; aÞ, we start by inserting

(12) into
R

qðpÞða; aÞda:

QðpÞ ¼ J
Z

exp

�
� m

2b�h2
~aaTK~aa � b

Z 1

0

V ½xðP ÞðnÞ�dn
�
d~aada: ð24Þ

Inserting the potential for the harmonic oscillator, V ðxÞ ¼ mx2x2=2, into the formula above results in

QðpÞ ¼ J
Z

exp

8<
:� m

2b�h2
~aaTK~aa � bmx2

2

Z 1

0

a

"
þ
XP
i¼1

aiwiðnÞ
#2
dn

9=
;d~aada: ð25Þ

Expanding the quadratic term, integrating over a, and simplifying yields

QðpÞ ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffi
2p

mx2b

s Z
exp

�
� m

2b�h2
~aaTK~aa � bmx2

2
~aaT A
'

�~cc~ccT
(
~aa

�
d~aa; ð26Þ

where

Ai;j ¼
Z 1

0

wiðnÞwjðnÞdn and ci ¼
Z 1

0

wiðnÞdn: ð27Þ

Applying (13)–(26), we can integrate over ~aa, which results in

QðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
detK

p

b�hx
det K
h'

þ ðb�hxÞ2 A
'

�~cc~ccT
(i(�1=2

; ð28Þ

where we have inserted the formula for J given in (14),

J ¼
ffiffiffiffiffiffiffiffiffiffi
detK

p m

2pb�h2

� �ðPþ1Þ=2

: ð29Þ

Distributing the determinant of K, we can reduce (28) into the following form:

QðpÞ ¼
1

b�hx
det I
h'

þ K�1 b�hxð Þ2 A
'

�~cc~ccT
(i(�1=2

: ð30Þ

Using the eigenvalues of K�1ðA�~cc~ccTÞ,

k1; . . . ; kPf g ¼ spec K�1 A
'h

�~cc~ccT
(i

; ð31Þ

we can reduce QðpÞ into its final form

QðpÞ ¼
1

b�hx

YP
i¼1

1
h

� ðb�hxÞ2ki

i�1=2
: ð32Þ
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To obtain the first energy estimator, we differentiate the logarithm of the approximate partition function

with respect to b

hE1iðpÞ ¼
1

b
1

"
�
XP
i¼1

ðb�hxÞ2ki

1� ðb�hxÞ2ki

#
: ð33Þ

In Fig. 2, a plot of hE1i=ð�hxÞ is shown as a function of T =ð�hxÞ, using linear elements with P ¼ 8; 16; 32,
and 64. For non-zero temperatures, we find that this energy estimator converges to the true energy (rep-

resented by the dotted curve) as P is increased. This estimator provides a reasonable approximation to the

exact energy curve for temperatures sufficiently far from the zero-point.

A popular method for calculating the average energy can be derived using the virial theorem [6],

hEi ¼ 1

2
hxV 0ðxÞi þ hV ðxÞi: ð34Þ

For the harmonic oscillator, this means that the total average energy is simply twice the average of the

potential energy. To obtain a second energy estimator, we find the average of the virial equation using the

approximate density function:

hE2iðpÞ ¼
1

QðpÞ

Z
V ðaÞ
�

þ 1

2
aV 0ðaÞ

�
qðpÞða; aÞda: ð35Þ

Inserting the potential for the harmonic oscillator, we find

hE2iðpÞ ¼
J

QðpÞ

Z
mx2a2 exp

�
� m

2b�h2
~aaTK~aa

�
exp

8<
:� bmx2

2

Z 1

0

a

"
þ
XP
i¼1

aiwiðnÞ
#2
dn

9=
;d~aada: ð36Þ

Expanding the quadratic, integrating over a, and simplifying results in

hE2iðpÞ ¼
J

QðpÞb

ffiffiffiffiffiffiffiffiffiffiffiffi
2p

bmx2

s Z
1
h

þ bmx2~aaT~cc~ccT~aa
i
exp

�
� m

2b�h2
~aaT K
h

þ ðb�hxÞ2 A
'

�~cc~ccT
(i
~aa

�
d~aa: ð37Þ

Fig. 2. Average energy as a function of temperature for the one-dimensional harmonic oscillator. The average energy is calculated

using the energy estimator hE1i and linear elements, with P ¼ 8, 16, 32, and 64. The dotted line represents the exact value, P ¼ 1.
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To rewrite (37) in the form of a Gaussian integral, we insert (26) for QðpÞ and introduce a dummy

variable, c:

hE2iðpÞ ¼
1

b
þ 2

b
o

oc
ln

Z
exp

�)))) � m

2b�h2
~aaTK~aa

�
exp

�
� m

2b�h2
ðb�hxÞ2~aaT A

h
� c~cc~ccT

i
~aa

�
d~aa

))))
c¼1

: ð38Þ

Applying (13), we can integrate over ~aa which results in

hE2iðpÞ ¼
1

b
� 1

b
o

oc
ln det K

h))) þ ðb�hxÞ2 A
'

� c~cc~ccT
(i)))

c¼1
: ð39Þ

Factoring out the constant det½Kþ ðb�hxÞ2A� from the inside of the determinant, we find

hE2iðpÞ ¼
1

b
� 1

b
o

oc
ln det I

�)))) � c K
'

þ ðb�hxÞ2A
(�1

~cc~ccT
�))))

c¼1
: ð40Þ

To reduce hE2iðpÞ into its final form, we evaluate the determinant, and differentiate with respect to c. Note
that the matrix ðKþ ðb�hxÞ2AÞ�1~cc~ccT is rank-one, with a single non-zero eigenvalue of k ¼
~ccTðKþ ðb�hxÞ2AÞ�1~cc. Applying this to (40), we are left with

hE2iðpÞ ¼
1

b 1� ð�hxbÞ2~ccT Kþ ð�hxbÞ2A
' (�1

~cc

� � : ð41Þ

In Fig. 3, we show the error in the average energy of the harmonic oscillator as a function of P , using
linear, Fourier, and cubic elements. The average energy is calculated using (a) E1 and (b) E2, at a fixed

temperature of T ¼ 0:1�hx=kB. We find that the E1 estimator is accurate to first-order in 1=P for all three

methods. On the other hand, the E2 estimator is far more accurate, with a convergence rate of second, third,

and sixth-order for the linear, Fourier, and cubic elements respectively. Although we cannot expect sixth-
order for a general system, this result suggests that we may be able to do better than first-order for specific

systems, depending on the estimator used to calculate thermodynamic averages.

Fig. 3. Results for the harmonic oscillator at a temperature of T ¼ 0:1�hx=kB. The error in the average energy is shown as a function of
P , using (a) E1 and (b) E2 for the energy estimator. The pluses, circles, and triangles represent results using linear, Fourier, and cubic

elements respectively.
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One of the more interesting features of purely harmonic systems is that they can be used to define a

reference potential for more complex systems. If the actual system is strongly harmonic, one can expect

improvements in efficiency over a more traditional method which uses the ‘‘free-particle’’ as its reference

system [4]. To illustrate how this is accomplished for a one dimensional system, with a general subspace

method, we start by adding and subtracting the potential for the harmonic oscillator in (24):

QðpÞ ¼ J
Z

exp

�
� m

2b�h2
~aaTK~aa � bmx2

2

Z 1

0

xðPÞðnÞ2 dn
�
exp

�
� b
Z 1

0

DV ½xðP ÞðnÞ�dn
�
d~aada; ð42Þ

where the perturbed potential is defined as DV ðxÞ ¼ V ðxÞ � mx2x2=2. After expanding the quadratic term,

and some simplification, we are left with

QðpÞ ¼ J
Z

exp

�
� m

2b�h2
~aaTB~aa
h

þ ðb�hxaÞ2
i�

exp

�
� b
Z 1

0

DV ½xðPÞðnÞ�dn
�
d~aada: ð43Þ

We have combined the stiffness and mass matrices into a single positive-definite matrix,

B :¼ Kþ ðb�hxÞ2½A�~cc~ccT�. One could further reduce (43) by replacing B by its Cholesky factorization,

which in turn induces a linear change of variables. Discussion of how, in the Fourier case, these new

variables relate to ‘‘distorted waves’’ can be found in an article by Miller [4].

5. Double well potential: a numerical experiment

As a numerical experiment, we apply each path integral discretization to the problem of calculating the

average energy of a particle in a one-dimensional double-well. We have chosen the same double-well po-

tential considered in [5], which is as follows:

V ðxÞ ¼ 1

2
mx2x2 þ A

ðx=aÞ2 þ 1
: ð44Þ

The parameter values are all in atomic units, with x ¼ 0:006, A ¼ 0:009, a ¼ 0:09, and m ¼ 1836. At low

temperatures, the energy is just above 0.006, which is below the barrier height of 0.009. The potential

energy, and the first four energy levels, are shown in Fig. 4.

Fig. 4. The double well potential energy function in atomic units. The horizontal bars illustrate the first four energy levels, with the

lowest energy state below the energy barrier.

S.D. Bond et al. / Journal of Computational Physics 185 (2003) 472–483 481



To measure the accuracy of each method, we compute the energy at a fixed temperature of T ¼ 0:1�hx=k,
using Metropolis Monte Carlo to generate the canonically distributed configurations. The one-dimensional

line-integrals of the potential are approximated using Simpson�s rule for the FD and HCS methods, and the

traditional trapezoidal rule for the STA method. The number of integration nodes is set equal to the

number of basis functions, P , resulting in the same number of potential evaluations for each method. For

the STA method this results the potential is evaluated at the end points of each polygonal segment (con-

sistent with its traditional implementation).

Since the aim of our numerical experiments is to measure the accuracy of the discretization, no attempt is
made to optimize the efficiency of the Monte Carlo algorithm. While the application of more advanced

sampling techniques such as staging [20], and harmonic reference potentials [4] would certainly improve the

sampling efficiency for this problem, this would not improve the accuracy of the underlying discretization.

It has been previously observed that averaged quantities (such as energy) converge at different rates,

depending on the system, reference potential, and the form of the estimator [5,6,21]. We use a virial esti-

mator of the energy [6],

E2 ¼ V ðxÞ
*

þ 1

2
xV 0ðxÞ

+
; ð45Þ

which was shown to exhibit improved convergence properties in the previous section. The accuracy of each

average is determined by comparing with the ‘‘exact’’ solution, computed by summing over the 15 lowest

energy levels as calculated with Numerov�s method [22].

In Fig. 5, the error in the computed energy is shown as a function of (a) the number of basis functions
and (b) normalized CPU time. When the number of basis functions (or potential evaluations) is used as a

measure of the work, we find that the FD and HCS methods are comparable, and both are more efficient

than the STA method. However, when compared on the basis of CPU time, the HCS method is dramat-

ically more efficient than both other methods. The inefficiency of the FD method for low-dimensional

problems can be explained by considering the work required to compute P points on the path. This work

scales like OðP 2Þ for the FD method, since the spectral basis functions are not compactly supported. On the

other hand, for the STA and HCS methods this cost scales linearly with P . Although for very high-di-

mensional problems, the cost of evaluating the potential should dominate, and we expect that the differ-
ences in computational cost would not be as pronounced.

Fig. 5. Results for the double well at a temperature of T ¼ 0:1�hx=kB. The difference between hE2i and the exact average energy is

shown as a function of (a) subspace dimension, P and (b) CPU time (work). The pluses, circles, and triangles represent results using

linear, Fourier, and cubic elements, respectively.
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6. Conclusion

We show that the problem of approximating Feynman–Kac path integrals can be addressed using the

finite-dimensional subspace approach. This general framework allows for the ready construction of broad

classes of new methods through the choice of a suitable set of basis functions. In addition, traditional

approaches, such as the short-time approximation and Fourier discretization methods, can be formulated

and compared using this formalism. As an illustration, we demonstrate that, by considering Hermite cubic

splines (HCS), a new method can be constructed that exhibits dramatically improved efficiency over
standard methods when applied to two one-dimensional model problems: the harmonic oscillator and an

anharmonic double-well. Of course, whether this improvement over standard methods can be sustained in

applications to the more complex multi-dimensional problems of interest in chemistry and physics is as yet

an open question; however, the enhancement seen in the one-dimensional problems is significant enough to

warrant further study. In addition, it must be pointed out that the HCS discretization is only one of in-

finitely many possible methods that can be constructed within the generalized subspace formalism approach

presented here.
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